Intramolecular binding mode of the C-terminus of Escherichia coli single-stranded DNA binding protein determined by nuclear magnetic resonance spectroscopy

نویسندگان

  • Dmitry Shishmarev
  • Yao Wang
  • Claire E. Mason
  • Xun-Cheng Su
  • Aaron J. Oakley
  • Bim Graham
  • Thomas Huber
  • Nicholas E. Dixon
  • Gottfried Otting
چکیده

Single-stranded DNA (ssDNA) binding protein (SSB) is an essential protein to protect ssDNA and recruit specific ssDNA-processing proteins. Escherichia coli SSB forms a tetramer at neutral pH, comprising a structurally well-defined ssDNA binding domain (OB-domain) and a disordered C-terminal domain (C-domain) of ∼ 64 amino acid residues. The C-terminal eight-residue segment of SSB (C-peptide) has been shown to interact with the OB-domain, but crystal structures failed to reveal any electron density of the C-peptide. Here we show that SSB forms a monomer at pH 3.4, which is suitable for studies by high-resolution nuclear magnetic resonance (NMR) spectroscopy. The OB-domain retains its 3D structure in the monomer, and the C-peptide is shown by nuclear Overhauser effects and lanthanide-induced pseudocontact shifts to bind to the OB-domain at a site that harbors ssDNA in the crystal structure of the SSB-ssDNA complex. (15)N relaxation data demonstrate high flexibility of the polypeptide segment linking the C-peptide to the OB-domain and somewhat increased flexibility of the C-peptide compared with the OB-domain, suggesting that the C-peptide either retains high mobility in the bound state or is in a fast equilibrium with an unbound state.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The helicase-binding domain of Escherichia coli DnaG primase interacts with the highly conserved C-terminal region of single-stranded DNA-binding protein

During bacterial DNA replication, DnaG primase and the χ subunit of DNA polymerase III compete for binding to single-stranded DNA-binding protein (SSB), thus facilitating the switch between priming and elongation. SSB proteins play an essential role in DNA metabolism by protecting single-stranded DNA and by mediating several important protein-protein interactions. Although an interaction of SSB...

متن کامل

Solution structure of DinI provides insight into its mode of RecA inactivation.

The Escherichia coli RecA protein triggers both DNA repair and mutagenesis in a process known as the SOS response. The 81-residue E. coli protein DinI inhibits activity of RecA in vivo. The solution structure of DinI has been determined by multidimensional triple resonance NMR spectroscopy, using restraints derived from two sets of residual dipolar couplings, obtained in bicelle and phage media...

متن کامل

Imaging and energetics of single SSB-ssDNA molecules reveal intramolecular condensation and insight into RecOR function

Escherichia coli single-stranded DNA (ssDNA) binding protein (SSB) is the defining bacterial member of ssDNA binding proteins essential for DNA maintenance. SSB binds ssDNA with a variable footprint of ∼30-70 nucleotides, reflecting partial or full wrapping of ssDNA around a tetramer of SSB. We directly imaged single molecules of SSB-coated ssDNA using total internal reflection fluorescence (TI...

متن کامل

Thermodynamics Binding of Tetrakis (2,3,5,6-Tetrafluoro-N,N′,Nʺ-Trimethyl Ammonium Phenyl) Porphyrin Nickel(II) With Calf Thymus DNA

In this study, aggregation behavior of a water soluble cationic metalloporphyrin, meso-tetrakis (2,3,5,6-tetrafluoro-N,N´,N´´-trimethyl ammonium phenyl) porphyrin nickel(II) [Ni(II)(TF4TMAPP)]4+ is investigated in 5 mM aqueous phosphate buffer of pH 7.0 at 25.0 °C and various ionic strengths using optical absorption and resonance light scattering spectroscopic methods. The...

متن کامل

Intrinsically disordered C-terminal tails of E. coli single-stranded DNA binding protein regulate cooperative binding to single-stranded DNA.

The homotetrameric Escherichia coli single-stranded DNA binding protein (SSB) plays a central role in DNA replication, repair and recombination. E. coli SSB can bind to long single-stranded DNA (ssDNA) in multiple binding modes using all four subunits [(SSB)65 mode] or only two subunits [(SSB)35 binding mode], with the binding mode preference regulated by salt concentration and SSB binding dens...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 42  شماره 

صفحات  -

تاریخ انتشار 2014